Synthesis of 1,6-Methano[10]annulenopyridines by Tandem Aza-Wittig Reaction/Electrocyclisation

Thomas Bohn, ${ }^{a}$ Walter Kramer, ${ }^{a}$ Richard Neidlein ${ }^{*, a}$ and Hans Suschitzky *,b
${ }^{\text {a }}$ Pharmazeutisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 364, D-69120 Heidelberg, Germany
${ }^{b}$ The Ramage Laboratories, Department of Chemistry and Applied Chemistry, University of Salford, Salford M5 4WT, UK

Iminophosphoranes $1\left(\mathrm{X}=\mathrm{PPh}_{3}\right)$ derived from the corresponding 1,6-methano[10]annulenes have been made to react with isothiocyanates and also with aromatic aldehydes to give, by an aza-Wittig reaction followed by cyclisation, novel 1,6-methano[10] annulenopyridines of structural types 2 and 6. Aza-Wittig reactions of the 2-triphenylphosphoranylideneamino derivative $3\left(\mathrm{X}=\mathrm{PPh}_{3}\right)$ with aromatic aldehydes or isothiocyanates led to the Schiff's bases 3 ($\mathrm{X}=\mathrm{CHAr}$) or carbodiimides ($\mathrm{X}=$ $\mathrm{C}=\mathrm{NAr}$) respectively. The latter on treatment with enamines gave, by a Diels-Alder cyclisation. the annuleno[2,3-b] pyridines 12.

Annelation of ring systems with N -heterocycles by means of an aza-Wittig reaction has recently been widely utilised because of the availability of functionalised iminophosphoranes. ${ }^{1}$ In continuation of our interest in the heteroannelation of $1,6-$ methano[10]annulenes ${ }^{2}$ we have explored tandem azaWittig cyclisations for the synthesis of annulenopyridines (e.g., 5 and 12). Examples of pyridine-fused annulenes of types 2 and 4 made by mediation of iminophosphoranes have been reported. ${ }^{2,3}$

In a Staudinger reaction we converted the 2,7-bis(azidoacrylate) $1\left[\mathrm{X}=\mathrm{N}_{2}, \mathrm{R}=\mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{N}_{3}\right]$ by treatment with triphenylphosphine into the bisphosphorane $1\left[\mathrm{X}=\mathrm{PPh}_{3}\right.$, $\left.\mathrm{R}=\mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{NPPh}_{3}\right]$. On being made to react with excess of p-chlorophenyl isothiocyanate in toluene the dipyridino compound 5 (56%) was obtained. Ring closure had occurred in tandem with a double aza-Wittig reaction between the bis-iminophosphorane and the isothiocyanate to give 5 (see Scheme 1). Extending the scope of one of our previous approaches ${ }^{2}$ we prepared a series of the annulenopyridines 2 ($\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}, \mathrm{COC}_{6} \mathrm{H}_{5}, \mathrm{C}_{6} \mathrm{H}_{11}$ and $p-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}$) from the required isothiocyanates and the phosphorane 1 ($\mathrm{X}=$ $\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{H}$). Aliphatic isocyanates or isothiocyanates did not react under similar conditions (hot toluene). The ${ }^{1} \mathrm{H}$ NMR spectra of these yellow annulated pyridines 2 are as expected for an aromatic 14π system. The two bridge protons appear upfield as doublets at $\delta_{\mathrm{H}} 0.23-0.83$ and -0.38 to $-0.24(J 9.5 \mathrm{~Hz})$ while the bridge C -atom resonates as a triplet in the region of $\delta_{\mathrm{C}} 34.1-32.0$. The diagnostic carbonyl and imine stretching bands were observed at ~ 1700 and $\sim 3400 \mathrm{~cm}^{-1}$ respectively. When CS_{2} was made to react with compound $1\left(\mathrm{X}=\mathrm{PPh}_{3}\right.$, $\mathrm{R}=\mathrm{H})$ a stable isothiocyanate $1(\mathrm{X}=\mathrm{CS}, \mathrm{R}=\mathrm{H})$ was produced which could not be made to cyclise to give a pyridine. This observation is borne out by other workers ${ }^{4}$ who found that similar isothiocyanates could not be cyclised. Its structure 1 ($\mathrm{X}=\mathrm{CS}, \mathrm{R}=\mathrm{H}$) is supported by a characteristic band at 2025 $\mathrm{cm}^{-1}(-\mathrm{NCS})$ as well as by the presence of the bridge protons at $\delta_{\mathrm{H}}-0.38$ and -0.22 .

The reaction of aryl aldehydes (ArCHO) with the iminophosphorane $1\left(\mathrm{X}=\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{H}\right)$ in hot toluene under argon afforded, via non-isolable imines $1(\mathrm{X}=\mathrm{CHAr})$, a series of novel 1,6-methano[10]annuleno[3,2-c]pyridines 6 (see Scheme 2). In the case of the p-nitrobenzaldehyde an inseparable mixture of the pyridoannulene $6\left(\mathrm{Ar}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$ and the dihydro compound 7 was obtained. Its composition was clearly

Scheme 1 Reagents: i, ArNCS; ii, $p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{NCS}$. Note non-systematic numbering scheme for compounds $\mathbf{1 , 2 , 5}$, used for the NMR data only.
indicated by an analysis of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (see Experimental section).

The phosphorane $3\left(\mathrm{X}=\mathrm{PPh}_{3}\right)$ obtained from the corresponding 2 -azido compound ${ }^{2}$ by a Staudinger reaction with triphenylphosphine was converted into the 1,6 -methano[10]annuleno $[2,3-b]$ pyridine 10 when made to react with p nitrocinnamaldehyde in benzene in the presence of Pd / C. In contrast to the iminophosphorane ${ }^{3} 3\left(X=\mathrm{PBu}_{3}\right)$ the phenyl analogue $3\left(\mathrm{X}=\mathrm{PPh}_{3}\right)$ is unstable and has to be allowed to react in situ with the reagent. It was found to be unreactive towards unsaturated ketones. The formation of compound 10 can be visualised to involve, first, an enaminic type of alkylation

Scheme 2 Reagents and conditions: i, ArCHO, toluene, reflux. Note non-systematic numbering schemes for NMR data.
of the iminophosphorane to give intermediate 8. This is followed by a proton transfer to give the intermediate 9. Cyclisation by an intramolecular aza-Wittig reaction leads to a dihydropyridine which is dehydrogenated (Pd / C) to give the product 10 (see Scheme 3).

Scheme 3 Reagents: i, $p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHCHO}, \mathrm{Pd} / \mathrm{C} \quad(10 \%)$, benzene. Note non-systematic NMR numbering for 10.

The phosphorane $3\left(\mathrm{X}=\mathrm{PPh}_{3}\right)$ could also be made to react in good yield with aromatic aldehydes to give the imines (Schiff's bases) $\mathbf{3}(\mathrm{X}=\mathrm{CHAr})$ and with aryl isothiocyanates to give the not very stable diimides $\mathbf{3}(\mathrm{X}=\mathrm{C}=\mathrm{NAr})$ (see Scheme 4).

$$
\begin{array}{cc}
\mathrm{Ar}=\mathrm{f} ; \mathrm{Ph} & \mathrm{Ar}=\mathbf{a} ; \text { anthracen-9-yl } \\
\text { g; } p-\mathrm{MeC}_{6} \mathrm{H}_{4} & \mathbf{b} ; p-\mathrm{ClC}_{6} \mathrm{H}_{4} \\
\mathrm{~h} ; 2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} & \\
& \text { c; } ; p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \\
& \text { d; } ; 2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3} \\
& \text { e; } 2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}
\end{array}
$$

Scheme 4 Reagents and conditions: i, ArCHO, $\mathrm{CHCl}_{3}, 60^{\circ} \mathrm{C}$; ii, ArNCS, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux

Analogous reactions on other phosphoranes are known. ${ }^{5}$ The imines showed a peak at $\delta_{\mathrm{C}} 155$ due to the iminocarbon in structures 3 ($\mathrm{X}=\mathrm{CHAr}$), and the diimides 3 ($\mathrm{X}=\mathrm{C}=\mathrm{NAr}$) displayed bands at $2133-2135 \mathrm{~cm}^{-1}$ and resonances at δ_{C} 135138 typical for unsymmetric carbodiimides. ${ }^{6}$ The carbodiimides

3 ($\mathrm{X}=\mathrm{C}=\mathrm{NAr}$) reacted speedily in hot bromobenzene with the electron-rich enamines 11 ($n=1$ or 2) in a Diels-Alder cyclisation with inverse electron demand ${ }^{7}$ to give the annulenopyridines 12. The bridge protons show up characteristically at

11
$n=1$ or 2

$12 \mathrm{a} ; \mathrm{R}^{4}=\mathrm{Ph}, \mathrm{R}^{2} \mathrm{R}^{3}=-\left[\mathrm{CH}_{2}\right]_{3}-$ b; $R^{1}=\mathrm{Ph}, R^{2} \mathrm{R}^{3}=-\left[\mathrm{CH}_{2}\right]_{4}-$ c; $\mathrm{R}^{1}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2} \mathrm{R}^{3}=-\left[\mathrm{CH}_{2}\right]_{3}-$ $d ; \mathrm{R}^{1}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2} \mathrm{R}^{3}=-\left[\mathrm{CH}_{2}\right]_{4}-$

Non-systematic NMR numbering scheme is shown for compounds 12
$\delta_{\mathrm{H}} \sim 1$ and ~-0.3 while the NH proton is to be found in the region δ_{H} 6.2-6.5. All other resonances correspond to heteroannulenes of a 14π aromatic character. Attempts to bring about a cyclisation with the imines 3 ($\mathrm{X}=\mathrm{CHAr}$) using electron-rich vinyl ethers ${ }^{8}$ gave intractable residues. The diene reactivity of these Schiff's bases for cyclisation is lacking in this case.

Experimental

M.p.s were recorded on a Reichert melting-point microscope and are uncorrected. IR spectra were measured on a PerkinElmer 325 spectrometer, ${ }^{1} \mathrm{H}$ NMR spectra with a Bruker HX90 E (W.M. -250 MHz) and ${ }^{13} \mathrm{C}$ spectra with a Bruker W.M. 250 (62.89 MHz); δ-values are given relative to tetramethylsilane. J-Values are given in Hz . NMR locants refer to the numbering schemes shown in the structural formulae. Mass spectra were measured on a Varian MAT 311A spectrometer. For column chromatography silica gel $60(63-200 \mu \mathrm{~m})$ (Merck) or neutral alumina 90, grade $1(63-200 \mu \mathrm{~m})$ (Fluka) was employed. Solvents were dried by the usual methods. All isocyanates and isothiocyanates are commercially available. Unstable compounds were analysed by peak matching.

Diethyl β, β-1,6-Methanocyclodeca-1,3,5,7,9-pentaene-2,7-di$y l)-1, \alpha^{\prime}-($ bistriphenylphosphoranylidenamino)acrylate $1[\mathrm{X}=$ $\left.\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{NPPh}_{3}\right]$.- To a solution of the azide $1\left[\mathrm{X}=\mathrm{N}_{2}, \mathrm{R}=\mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{N}_{3}\right]^{2}(0.13 \mathrm{~g}, 0.31 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$ was added triphenylphosphine (1.62 g , 0.62 mmol) in small portions. When evolution of gas had ceased the reaction mixture was agitated for 12 h . The precipitate was filtered off and gave, on recrystallisation $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-diethyl ether 2:1) red crystals of compound $1\left[\mathrm{X}=\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{CH}=\mathrm{C}\right.$ $\left.\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{NPPh}_{3}\right](0.52 \mathrm{~g}, 93 \%)$, m.p. $289^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$ $-0.19\left(2 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.-\mathrm{H}_{\mathrm{B}}\right), 0.98\left(6 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{OCH}_{2} \mathrm{Me}\right)$, $3.80\left(4 \mathrm{H}, \mathrm{q}, J 7.6, \mathrm{OCH}_{2} \mathrm{Me}\right) 6.90(2 \mathrm{H}, \mathrm{t}, J 10.6,4-$ and $9-\mathrm{H})$, $7.29(2 \mathrm{H}, \mathrm{d}, J 9.3,3$ - and $8-\mathrm{H}), 7.47(2 \mathrm{H}, \mathrm{d}, J 9.3,5$ - and $10-\mathrm{H})$, 8.51 ($2 \mathrm{H}, \mathrm{d}, J 10,12$ - and $14-\mathrm{H}$); $m / z 889$ (M^{+}) (Found: C, 77.1 ; $\mathrm{H}, 5.7 ; \mathrm{N}, 3.2 ; \mathrm{P}, 6.8 . \mathrm{C}_{57} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{P}_{2}$ requires C, $77.01 ; \mathrm{H}, 5.67$; N, 3.15; P, 6.97\%).

General Preparation of Ethyl 1-Arylamino-5,10-methanocyclo-deca[c]pyridine-3-carboxylate 2a-d.-(a) To a solution of iminophosphorane $1\left(\mathrm{X}=\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{H}\right)^{2}(2.38 \mathrm{~g}, 4.5 \mathrm{mmol})$ in dry toluene ($40 \mathrm{~cm}^{3}$) was added p-chlorophenyl isothiocyanate $(0.76 \mathrm{~g}, 4.5 \mathrm{mmol})$ and the reaction mixture was agitated for 30 min at $0^{\circ} \mathrm{C}$. This was followed by heating under reflux for 7 h . The mixture was stirred at room temperature for 3 days. The yellow precipitate was filtered off and washed on the filter
$\left(3 \times 20 \mathrm{~cm}^{3}\right.$ hexane) and purified by chromatography $\left(\mathrm{SiO}_{2}\right.$; hexane-ethyl acetate $3: 2$). Recrystallisation $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane 1:1) yielded ethyl 1-(p-chloroanilino)-5,10-methanocyclo-deca[c]pyridine-3-carboxylate $2 \mathbf{a}\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)(1.31 \mathrm{~g}$, 75%), m.p. $162^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3431(\mathrm{NH})$ and $1679\left(\mathrm{CO}_{2} \mathrm{Et}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.24\left(1 \mathrm{H}, \mathrm{d}, J 9.5\right.$ and $\left.1,11-\mathrm{H}_{\mathrm{A}}\right), 0.80(1 \mathrm{H}, \mathrm{d}, J$ $9.5,11-\mathrm{H}_{\mathrm{B}}$), $1.49\left(3 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.49(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 7.05-7.20(3 \mathrm{H}, \mathrm{m}, \mathrm{NH}+4-$ and $7-\mathrm{H}), 7.24-7.34$ $(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}+5-\mathrm{and} 8-\mathrm{H}), 7.40(1 \mathrm{H}, \mathrm{t}, 9-\mathrm{H}), 7.50-7.58$ $(3 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}+10-\mathrm{H})$ and $8.59(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}) ; m / z 392$ $\left(\mathrm{M}^{+}+2\right)$ and $390\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 70.6 ; \mathrm{H}, 5.0 ; \mathrm{N}, 7.0$. $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 70.68 ; \mathrm{H}, 4.90 ; \mathrm{N}, 7.17 \%$).
(b) A mixture of benzoyl isothiocyanate ($1.08 \mathrm{~g}, 8 \mathrm{mmol}$) and iminophosphorane $1\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{2}(2.23 \mathrm{~g}, 8 \mathrm{mmol})$ in toluene ($50 \mathrm{~cm}^{3}$) was heated under reflux (24 h). The mixture was then stirred at room temperature for 24 h . The solvent was removed under reduced pressure and the oily residue was washed (3×20 cm^{3} hexane) and purified (SiO_{2}; hexane-ethyl acetate $5: 1$) to give ethyl 1-benzoylamino-5,10-methanocyclodeca[c]pyridine-3carboxylate $2 \mathrm{~b}\left(\mathrm{Ar}=\mathrm{COC}_{6} \mathrm{H}_{5}\right)(1.93 \mathrm{~g}, 63 \%)$, m.p. $158^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3410(\mathrm{NH})$ and $1712\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.38$ $\left(1 \mathrm{H}, \mathrm{d}, J 9.4\right.$ and $\left.1,11-\mathrm{H}_{\mathrm{A}}\right), 0.23\left(1 \mathrm{H}, \mathrm{d}, J 9.4,11-\mathrm{H}_{\mathrm{B}}\right), 1.44(3 \mathrm{H}$, $\left.\mathrm{t}, J 8.2, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.43\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2} \mathrm{Me}\right), 5.47(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $7.18-7.62(7 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, 7-$ and $8-\mathrm{H}), 7.69(1 \mathrm{H}, \mathrm{d}, J 7.3,9-\mathrm{H}), 7.98$ $(1 \mathrm{H}, \mathrm{d}, J 8.6,4-\mathrm{H}), 8.50(1 \mathrm{H}, \mathrm{d}, J 6.8,10-\mathrm{H}), 8.51(1 \mathrm{H}, \mathrm{d}, J 6.8$, $5-\mathrm{H})$, and $8.91(1 \mathrm{H}, \mathrm{d}, J 9.5,12-\mathrm{H}) ; m / z 384\left(\mathrm{M}^{+}\right)$(Found: C, $74.7 ; \mathrm{H}, 5.3 ; \mathrm{N}, 7.35 ; \mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 74.98 ; \mathrm{H}, 5.24 ; \mathrm{N}$, 7.29%).
(c) A mixture of cyclohexyl isothiocyanate $(0.57 \mathrm{~g}, 4.05$ $\mathrm{mmol})$, iminophosphorane $1\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{\mathbf{2}}(2.09 \mathrm{~g}, 4.05 \mathrm{mmol})$ and toluene ($15 \mathrm{~cm}^{3}$) was treated as in (a). Purification of the crude product by chromatography $\left(\mathrm{SiO}_{2}\right.$; hexane-ethyl acetate 10:1) gave ethyl 1-cyclohexylamino-5,10-methanocyclodeca[c]-pyridine-3-carboxylate $2 \mathrm{c}\left(\mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{11}\right)(0.89 \mathrm{~g}, 61 \%)$, m.p. $122^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 3410(\mathrm{NH})$ and $1719\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$ $-0.29\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{A}}\right), 0.83\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right)$, 1.18-1.40 (4 H, m, cyclohexyl), $1.47\left(3 \mathrm{H}, \mathrm{t}, J 8.3 \mathrm{OCH}_{2} \mathrm{Me}\right)$, 1.62-1.88 (4 H, m, cyclohexyl), 2.12-2.29 ($2 \mathrm{H}, \mathrm{m}$, cyclohexyl), $4.20-4.32\left(1 \mathrm{H}, \mathrm{m}, \mathrm{NHCH}\left[\mathrm{CH}_{2}\right]_{5}\right), 4.45\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Me}\right)$, $4.94(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 7.0(1 \mathrm{H}, \mathrm{d}, J 10.6,7-\mathrm{H}), 7.10-7.18(1 \mathrm{H}, \mathrm{m}$, 4-H), $7.24-7.32(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and} 8-\mathrm{H}), 7.48(1 \mathrm{H}, \mathrm{d}, J 9.7,9-\mathrm{H})$, $7.70-7.54(1 \mathrm{H}, \mathrm{m}, 10-\mathrm{H})$ and $8.31(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H})$ (Found: M^{+}, 362.1996. $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{M}, 362.1995$).
(d) A mixture of toluene-p-sulfonyl isocyanate $(0.85 \mathrm{~g}, 4.32$ $\mathbf{m m o l}$), iminophosphorane $1\left(\mathbf{X}=\mathrm{PPh}_{3}\right)^{\mathbf{2}}(2.23 \mathrm{~g}, 4.32 \mathrm{mmol})$ and toluene $\left(50 \mathrm{~cm}^{3}\right)$ was treated as in (a). Repeated chromatography on silica gel with hexane-ethyl acetate ($1: 1$) as developer afforded a pure sample of ethyl 1-(p-tosylsamino)-5,10-methanocyclodeca[c]pyridine-3-carboxylate $2 \mathrm{~d} \quad(\mathrm{R}=p$ $\left.\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{SO}_{2}\right)(1.31 \mathrm{~g}, 71 \%)$, m.p. $162^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 3443$ (NH) and $1724\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.33(1 \mathrm{H}, \mathrm{d}, J$ 9.2, 11$\left.\mathrm{H}_{\mathrm{A}}\right), 0.28\left(1 \mathrm{H}, \mathrm{d}, J 9.2,11-\mathrm{H}_{\mathrm{B}}\right), 1.51\left(3 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{OCH}_{2} \mathrm{Me}\right)$, $2.38(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 4.53\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2} \mathrm{Me}\right), 7.17-7.40(5 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{ArH}, 4-, 7-$ and $8-\mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{t}, J 9.5,9-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{d}$, $J 8.6,5-\mathrm{H}), 7.97(2 \mathrm{H}, \mathrm{d}, 2 \times \mathrm{ArH}), 8.16(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}), 9.15(1$ $\mathrm{H}, \mathrm{d}, J 10.6,10-\mathrm{H})$ and $13.23(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; m / z 434\left(\mathrm{M}^{+}\right)$ (Found: C, 66.5; H, 5.3; N, 6.5. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$ requires C , 66.34; H, 5.10; N, 6.45\%).

Under similar conditions a reaction mixture of p-chlorophenyl isothiocyanate $(0.32 \mathrm{~g}, 0.93 \mathrm{mmol})$ and iminophosporane $1\left[\mathrm{X}=\mathrm{PPh}_{3}, \mathrm{R}=\mathrm{CH}=\mathrm{C}\left(\mathrm{CO}_{2} \mathrm{Et}\right) \mathrm{NPPh}_{3}\right](0.41 \mathrm{~g}, 0.47 \mathrm{mmol})$ in toluene $\left(10 \mathrm{~cm}^{3}\right)$ after chromatography $\left(\mathrm{SiO}_{2}\right.$; hexaneethyl acetate $10: 1$) gave diethyl 4,11-bis-(p-chloroanilino)-7,14-methanocyclodeca[1,2-c:6,7-c']dipyridine-2,9-dicarboxylate 5 ($1.31 \mathrm{~g}, 56 \%$), m.p. $242^{\circ} \mathrm{C}$; $v_{\max } / \mathrm{cm}^{-1} 3442$ (NH) and 1700 $\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}}\left(\left[{ }^{2} \mathrm{H}_{5}\right]\right.$ pyridine $) 1.13\left(2 \mathrm{H}, \mathrm{s}, 11-\mathrm{H}_{\mathrm{A}}\right.$ and $\left.-\mathrm{H}_{\mathrm{B}}\right), 1.32$ $\left(6 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.58\left(4 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2} \mathrm{Me}\right), 7.42(2 \mathrm{H}, \mathrm{d}, J$ 9.8, $4-$ and $9-\mathrm{H}), 7.46(2 \mathrm{H}, \mathrm{d}, J 9.6,5-$ and $10-\mathrm{H}), 7.43-8.17(8 \mathrm{H}$,
$\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ system, $\left.8 \times \mathrm{ArH}\right), 8.52(2 \mathrm{H}, \mathrm{s}, 12-$ and $15-\mathrm{H})$ and 9.12 $(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; m / z 642\left(\mathrm{M}^{+}+4\right), 640\left(\mathrm{M}^{+}+2\right)$ and $638\left(\mathrm{M}^{+}\right)$ (Found: C, $65.85 ; \mathrm{H}, 4.0 ; \mathrm{N}, 9.0 . \mathrm{C}_{35} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, 65.83; H, 4.38; N, 8.77).

Ethyl α-Isothiocyanate- β-(1,6-methanocyclodeca-1,3,5,7,9-pentaen-2-yl)acrylate $1(\mathrm{X}=\mathrm{CS}, \mathrm{R}=\mathrm{H})$.-A mixture of CS_{2} $(0.46 \mathrm{~g}, 6.04 \mathrm{mmol})$ and iminophosphorane $1\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{2}$ $(3.11 \mathrm{~g}, 6.03 \mathrm{mmol})$ in toluene $\left(20 \mathrm{~cm}^{3}\right)$ was heated under reflux (16 h) and was then stirred at room temperature 3 days before the solvent and excess of CS_{2} were removed under reduced pressure. The residue was washed ($3 \times 20 \mathrm{~cm}^{3}$ hexane) to remove by-products such as triphenylphosphine sulfide, and was then chromatographed $\left(\mathrm{SiO}_{2}\right.$; hexane-ethyl acetate 3:1) to yield title compound $1(\mathrm{X}=\mathrm{CS}, \mathrm{R}=\mathrm{H})$ as an orange oil $(1.13 \mathrm{~g}$, $63 \%) ; \quad v_{\max } / \mathrm{cm}^{-1} 2025(\mathrm{~N}=\mathrm{C}=\mathrm{S})$ and $1722\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right)-0.38\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{A}}\right),-0.22(1 \mathrm{H}, \mathrm{d}, J 9.5$, $\left.11-\mathrm{H}_{\mathrm{B}}\right), 1.42\left(3 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{OCH}_{2} M e\right), 4.39(2 \mathrm{H}, \mathrm{q}, J 7.6$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 6.94-7.07(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 7.10-7.65(5 \mathrm{H}, \mathrm{m}, 4-, 5-, 7-$, $8-$ and $9-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H})$ and $7.98(1 \mathrm{H}, \mathrm{d}, J 10.6,10-\mathrm{H})$; $m / z 297\left(\mathrm{M}^{+}\right)$(Found: C, 68.6; H, 5.2; N, 4.5. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68.66 ; \mathrm{H}, 5.08 ; \mathrm{N}, 4.71 \%$).

4-(p-Nitrophenyl)-7,12-methanocyclodeca[b]pyridine 10.To a solution of 2-azido-1,6-methanocyclodeca-1,3,5,7,9diene ${ }^{2} \mathbf{3}\left(\mathbf{X}=\mathrm{N}_{2}\right)(1.55 \mathrm{~g}, 8.47 \mathrm{mmol})$ in dry benzene $\left(10 \mathrm{~cm}^{3}\right)$ was added triphenylphosphine $(2.16 \mathrm{~g}, 8.2 \mathrm{mmol})$ and the mixture was stirred for 30 min at room temperature to give the iminophosphorane $\mathbf{3}\left(\mathrm{X}=\mathrm{PPh}_{3}\right) \cdot{ }^{\mathbf{2}}$ To this solution were added p-nitrocinnamaldehyde ($0.62 \mathrm{~g}, 3.5 \mathrm{mmol}$) and $10 \% \mathrm{Pd} / \mathrm{C}(1.75$ $\mathrm{g}, 0.175 \mathrm{mmol}$), and the mixture was refluxed (18 h). After removal of the solvent the resulting residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; hexane-ethyl acetate $\left.5: 1\right)$ to give the title compound $10(0.82 \mathrm{~g}, 32 \%)$, m.p. $134^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.04(1$ $\mathrm{H}, \mathrm{d}, J 9.5$ and $\left.1,11-\mathrm{H}_{\mathrm{A}}\right), 1.18\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 7.02-7.21$ ($2 \mathrm{H}, \mathrm{m}, 4$ - and $7-\mathrm{H}$), $7.22-7.32(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}+5$ - and 8H), $7.38(1 \mathrm{H}, \mathrm{t}, 9-\mathrm{H}), 7.49-7.56(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}, 10-\mathrm{H}$ and $\mathbf{H}^{\boldsymbol{\beta}}$) and $8.54\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}^{\alpha}\right)$ (Found: $\mathbf{M}^{+}, 314.10324$. $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{M}, 314.105$ 54).
[10]Annulenopyridines 6a-f.-(a) A mixture of triphenylphosphoranylideneamine $1\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{2}(11.72 \mathrm{~g}, 22.73 \mathrm{mmol})$, p-chlorobenzaldehyde $(9.58 \mathrm{~g}, 68.19 \mathrm{mmol})$ and dry p-xylene $\left(150 \mathrm{~cm}^{3}\right.$) was heated under reflux for 24 h . The solvent was removed under reduced pressure. The residue was chromatographed (SiO_{2}; cyclohexane-benzene-triethylamine $9: 0.5: 0.5$). Recrystallisation (cyclohexane) gave ethyl 1-(p-chlorophenyl)-5,10-methanocyclodeca[c]pyridine-3-carboxylate 6a ($\mathrm{Ar}=p$ $\left.\mathrm{ClC}_{6} \mathrm{H}_{4}\right)(6.69 \mathrm{~g}, 75 \%)$, m.p. $191^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 1722\left(\mathrm{CO}_{2} \mathrm{Et}\right)$; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.12\left(1 \mathrm{H}, \mathrm{d}, J 9.5\right.$ and $\left.1,11-\mathrm{H}_{\mathrm{A}}\right), 1.04(1 \mathrm{H}, \mathrm{d}, J$ $\left.9.5,11-\mathrm{H}_{\mathrm{B}}\right), 1.50\left(3 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{OCH}_{2} M e\right), 4.53(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 7.09(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}), 7.12(1 \mathrm{H}, \mathrm{d}, 7-\mathrm{H}), 7.27-7.38$ (3 H, m, 5-, 8- and 9-H), $7.49\left(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$-system, $2 \times \mathrm{ArH}), 7.57(1 \mathrm{H}, \mathrm{d}, J 7.3,10-\mathrm{H}), 7.79(2 \mathrm{H}, \mathrm{d}, J 7.5$, $\mathrm{AA}^{\prime} \mathbf{B B}^{\prime}$-system, $2 \times \mathrm{ArH}$) and $8.98(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}) ; m / z 375$ $\left(\mathrm{M}^{+}\right)$(Found: C, 73.2; H, 5.1; N, 3.85; Cl, 9.75. $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClNO}_{2}$ requires $\mathrm{C}, 73.50 ; \mathrm{H}, 4.83 ; \mathrm{N}, 3.73 . \mathrm{Cl}, 9.43 \%$).
(b) A mixture of iminophosphorane $1\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{\mathbf{2}}(2.88 \mathrm{~g}$, $5.58 \mathrm{mmol}), p$-cyanobenzaldehyde $(2.53 \mathrm{~g}, 16.75 \mathrm{mmol})$ and dry p-xylene ($50 \mathrm{~cm}^{3}$) was treated as in (a). Purification of the crude product by chromatography $\left(\mathrm{SiO}_{2}\right.$; cyclohexane-benzene-triethylamine $8: 1: 1$) yielded ethyl 1 -(p-cyanophenyl)-5,10-meth-anocyclodeca[c]pyridine-3-carboxylate $6 \mathrm{~b}\left(\mathrm{Ar}=p-\mathrm{NCC}_{6} \mathrm{H}_{4}\right)$ $(1.47 \mathrm{~g}, 72 \%)$, m.p. $187^{\circ} \mathrm{C} ; v_{\max } / \mathrm{cm}^{-1} 1735\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right)-0.10\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{A}}\right), 1.04(1 \mathrm{H}, \mathrm{d}, J 9.5$, $\left.11-\mathrm{H}_{\mathrm{B}}\right), 1.48\left(3 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.52\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2} \mathrm{Me}\right)$, $7.00-7.20(2 \mathrm{H}, \mathrm{m}, 4-$ and $7-\mathrm{H}), 7.24-7.47(3 \mathrm{H}, \mathrm{m}, 5-, 8-$ and $9-\mathrm{H}), 7.82\left(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$-system, $2 \times \mathrm{ArH}$), $7.94(2 \mathrm{H}$,
$\mathrm{d}, J 7.5, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$-system, $2 \times \mathrm{ArH}$), $8.12(1 \mathrm{H}, \mathrm{d}, J 7.3,10-\mathrm{H})$ and $9.01(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H})$; $m / z 366\left(\mathrm{M}^{+}\right)$(Found: C, 78.5; H, 4.8; $\mathrm{N}, 7.8 . \mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.67 ; \mathrm{H}, 4.95 ; \mathrm{N}, 7.65 \%$).
(c) A mixture of iminophosphorane $1\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{2}(2.88 \mathrm{~g}$, 5.58 mmol), p-nitrocinnamaldehyde ($2.96 \mathrm{~g}, 16.75 \mathrm{mmol}$) and dry xylene ($30 \mathrm{~cm}^{3}$) was treated as in (a). Purification of the crude product by chromatography $\left(\mathrm{SiO}_{2} ;\right.$ cyclohexane-benzene-triethylamine $8: 1: 1$) yielded ethyl 1 -(p-nitrostyryl)-5,10-methanocyclodeca[c]pyridine-3-carboxylate $6 \mathbf{c}(\mathrm{Ar}=p$ $\left.\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CH}\right)(1.56 \mathrm{~g}, 68 \%)$, m.p. $200^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 1731$ $\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.11\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{A}}\right), 1.02$ $\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 1.51\left(3 \mathrm{H}, \mathrm{t}, J 8.4 \mathrm{OCH}_{2} \mathrm{Me}\right), 4.57(2 \mathrm{H}$, $\left.\mathrm{q}, \mathrm{OCH}_{2} \mathrm{Me}\right), 7.15(1 \mathrm{H}, \mathrm{d}, 4-\mathrm{H}), 7.29-7.58(6 \mathrm{H}, \mathrm{m}, 5-, 7-, 8-, 9-$, 18- and 19-H), $7.80\left(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}-\right.$ system, $2 \times \mathrm{ArH}$), $8.00(1 \mathrm{H}, \mathrm{d}, J 7.3,10-\mathrm{H}), 8.27\left(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$-system, $2 \times \mathrm{ArH}$), $8.92(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}) ; m / z 387\left(\mathrm{M}^{+}\right)$(Found: C, 72.6; H, $5.0 ; \mathrm{N}, 6.6 \% ; \mathrm{M}^{+}, 412.1423 . \mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 72.80 ; \mathrm{H}$, $4.89 ; \mathrm{N}, 6.79 \%$; M, 412.1423).
(d) Terephthalaldehyde $(4.76 \mathrm{~g}, 35.49 \mathrm{mmol})$ and iminophosphorane $1\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{2}(6.1 \mathrm{~g}, 11.83 \mathrm{mmol})$ gave, under similar conditions, ethyl 1-(p-formylphenyl)-5,10-methano-cyclodeca[c]pyridine-3-carboxylate $\quad \mathbf{6 d}\left(\mathrm{Ar}=p-\mathrm{OCHC}_{6} \mathrm{H}_{4}\right)$ $(3.01 \mathrm{~g}, 69 \%)$, m.p. $183^{\circ} \mathrm{C}$; $v_{\text {max }} / \mathrm{cm}^{-1} 1741(\mathrm{HC=O})$ and 1708 $\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right) 0.05\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{A}}\right), 1.09(1 \mathrm{H}$, $\left.\mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 1.50\left(3 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.53(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 7.06-7.18(2 \mathrm{H}, \mathrm{m}, 4-\mathrm{and} 7-\mathrm{H}), 7.29-7.48(3 \mathrm{H}, \mathrm{m}$, $5-, 8-$ and $9-\mathrm{H}), 7.60(1 \mathrm{H}, \mathrm{d}, J 7.3,10-\mathrm{H}), 7.82-7.98(2 \mathrm{H}, \mathrm{d}, J 7.5$, $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$-system, $2 \times \mathrm{ArH}$), $7.98-8.12\left(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}-\right.$ system, $2 \times \mathrm{ArH}), 9.02(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H})$ and $10.14(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO})$ (Found: $\mathrm{M}^{+}, 369.1366 . \mathrm{C}_{24} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires $\mathrm{M}, 369.1365$).
(e) 3-Nitrobenzaldehyde ($2.53 \mathrm{~g}, 16.75 \mathrm{mmol}$) and iminophosphorane $1\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{2}(2.88 \mathrm{~g}, 5.58 \mathrm{mmol})$ gave, under similar conditions, ethyl $1-(\mathrm{m}$-nitrophenyl) $-5,10$-methanocyclo-deca[c]pyridine-3-carboxylate $6 \mathbf{e}\left(\mathrm{Ar}=\mathrm{m}-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)(1.1 \mathrm{~g}$, $51 \%) ; \nu_{\max } / \mathrm{cm}^{-1} 1715\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.09(1 \mathrm{H}, \mathrm{d}, J$ $\left.9.5,11-\mathrm{H}_{\mathrm{A}}\right), 1.07\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 1.50(3 \mathrm{H}, \mathrm{t}, J 8.4$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.57\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2} \mathrm{Me}\right), 7.08(1 \mathrm{H}, \mathrm{d}, J 10.6,4-\mathrm{H})$, $7.13(1 \mathrm{H}, \mathrm{d}, J 7.3,7-\mathrm{H}), 7.32-7.45(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ and $5-\mathrm{H})$, $7.57-7.76(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 9-\mathrm{H}), 8.19(1 \mathrm{H}, \mathrm{d}, J 7.0,10-\mathrm{H}), 8.36$ ($1 \mathrm{H}, \mathrm{dd}, m-\mathrm{ArH}$), $8.68(1 \mathrm{H}, \mathrm{s}, p-\mathrm{ArH})$ and $9.04(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H})$; $\mathrm{m} / \mathrm{z} 387\left(\mathrm{M}^{+}\right)$(Found: C, $71.5 ; \mathrm{H}, 4.8 ; \mathrm{N}, 7.1 \% ; \mathrm{M}^{+}, 386.1261$. $\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 71.49 ; \mathrm{H}, 4.70 ; \mathrm{N}, 7.25 \% ; \mathrm{M}, 386.1266\right)$.
(f) Under similar conditions a reaction mixture of iminophosphorane $1\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{2}(2.88 \mathrm{~g}, 5.58 \mathrm{mmol})$ and p nitrobenzaldehyde ($2.53 \mathrm{~g}, 16.75 \mathrm{mmol}$) in dry xylene $\left(50 \mathrm{~cm}^{3}\right)$ gave ethyl 1 -(p-nitrophenyl)-5,10-methanocyclodeca[c]pyr-idine-3-carboxylate $6 \mathrm{f}\left(\mathrm{Ar}=p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)$ and ethyl 1 - $(\mathrm{p}$-nitro-phenyl)-1,2-dihydro-5,10-methanocyclodeca[c]pyridine-3-carboxylate $7\left(\mathrm{Ar}=p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)$, as a mixture $(0.97 \mathrm{~g}, 45 \%)$, m.p. $193{ }^{\circ} \mathrm{C} ; v_{\text {max }} / \mathrm{cm}^{-1} 1712\left(\mathrm{CO}_{2} \mathrm{Et}\right) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.04(1 \mathrm{H}, \mathrm{d}$, $J 9.5$ and $\left.1,11-\mathrm{H}_{\mathrm{A}}\right), 1.11\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 1.57(3 \mathrm{H}, \mathrm{t}, J$ 8.4, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.59\left(2 \mathrm{H}, \mathrm{q}, \mathrm{OCH}_{2} \mathrm{Me}\right), 7.06-7.27(2 \mathrm{H}, \mathrm{m}, 4-$ and 7-H), 7.33-7.52 ($5 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}+5-, 8$ and 9-H), 8.11$8.23(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}), 8.38(1 \mathrm{H}, \mathrm{d}, J 7.3,10-\mathrm{H})$ and $9.09(1 \mathrm{H}$, $\mathrm{s}, 12-\mathrm{H}$) (for 6 f); $-0.30\left(1 \mathrm{H}, \mathrm{d}, J 9.5\right.$ and $\left.1,11-\mathrm{H}_{\mathrm{A}}\right), 0.14(1 \mathrm{H}$, $\left.\mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 1.40\left(3 \mathrm{H}, \mathrm{t}, J 8.4, \mathrm{OCH}_{2} \mathrm{Me}\right), 4.38(2 \mathrm{H}, \mathrm{q}$, $\left.\mathrm{OCH}_{2} \mathrm{Me}\right), 4.99(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 5.99(1 \mathrm{H}, \mathrm{s}, 14-\mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{d}, J$ 7.3, 4-H), $7.06-7.59(7 \mathrm{H}, \mathrm{m}, \mathrm{ArH}+5-, 7-$ and $8-\mathrm{H}), 7.58-7.72$ $(2 \mathrm{H}, \mathrm{m}, 9-$ and $10-\mathrm{H})$ and $8.71(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H})$ (for 7); $m / z 387$ (M^{+}for 7) [Found (for 7): C, 70.5; H, 5.2; N, 7.3. $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires C, $70.31 ; \mathrm{H}, 4.94 ; \mathrm{N}, 7.23 \%$].

Synthesis of Imines 3a-e ($\mathrm{X}=\mathrm{CHAr}$). General Procedure.In a dried, argon-filled Schlenck tube a mixture of the iminophosphorane $3\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{2}(2.08 \mathrm{~g}, 5 \mathrm{mmol})$, anthracene- 9 carbaldehyde ($1.03 \mathrm{~g}, 5 \mathrm{mmol}$) and chloroform ($50 \mathrm{~cm}^{3}$) was heated for 20 h at $60^{\circ} \mathrm{C}$. After cooling, the solvent was driven off under reduced pressure and the resulting oil was purified by
means of silica gel short-column chromatography in hexaneethyl acetate ($10: 1$) to give N -(anthracen-9-ylmethylene)bicyclo-[4.4.1]undeca-1(10),2,4,6,8-pentaen-2-ylamine 3a ($\mathrm{Ar}=$ an-thracen- $9-\mathrm{yl})(0.78 \mathrm{~g}, 45 \%)$, m.p. $37^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.41(1 \mathrm{H}$, $\left.\mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{A}}\right), 0.10\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 7.00(1 \mathrm{H}, \mathrm{d}$, $J 9.3,3-\mathrm{H}), 7.15(1 \mathrm{H}, \mathrm{d}, J 9.3,4-\mathrm{H}), 7.19-7.31(3 \mathrm{H}, \mathrm{m}, 5-, 8-$ and $9-\mathrm{H}$), 7.43 ($1 \mathrm{H}, \mathrm{d}, J 9.1,7-\mathrm{H}), 7.44-7.60(4 \mathrm{H}, \mathrm{m}$, $4 \times$ anthracene H$), 7.92(1 \mathrm{H}, \mathrm{d}, J 7.3,10-\mathrm{H}), 8.02(2 \mathrm{H}, \mathrm{d}$, $2 \times$ anthracene H$), 8.51(1 \mathrm{H}, \mathrm{s}, 1 \times$ anthracene H and $\mathrm{N}=\mathrm{CH})$ $8.85(2 \mathrm{H}, \mathrm{d}, 2 \times$ anthracene H$)$ and $9.37(1 \mathrm{H}, \mathrm{s}, 12-\mathrm{H}-\mathrm{N}=\mathrm{CHAr})$ (Found: M^{+}, 345.1518. $\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}$ requires $\mathrm{M}, 345.1517$).

N -(4-Chlorobenzylidene)bicyclo[4.4.1]undeca-1(10), 2,4,6,8-pentaen-2-ylamine 3b $\left(\mathrm{Ar}=p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)$. Yellow oil, $\delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right)-0.48\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{A}}\right),-0.07(1 \mathrm{H}, \mathrm{d}, J$ $\left.9.5,11-\mathrm{H}_{\mathrm{B}}\right), 6.81(1 \mathrm{H}, \mathrm{d}, J 9.3,3-\mathrm{H}), 7.08(1 \mathrm{H}, \mathrm{t}, J 9.3,4-\mathrm{H})$, 7.17-7.23($2 \mathrm{H}, \mathrm{m}, 8$ - and $9-\mathrm{H}$), $7.35(1 \mathrm{H}, \mathrm{d}, J 9.3,5-\mathrm{H}), 7.48-7.51$ ($3 \mathrm{H}, \mathrm{m}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$-system, $J 7.5,2 \times \mathrm{ArH}$ and $7-\mathrm{H}$), 7.78-7.92 ($3 \mathrm{H}, \mathrm{m}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$-system, $2 \times \mathrm{ArH}, J 7.5 \mathrm{~Hz}$ and $10-\mathrm{H}$) and 8.45 ($1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH}$ (Found: $\mathrm{M}^{+}, 279.0808 . \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ClN}$ requires M , 279.0815, peakmatching because of instability of the product).

N -(4-Nitrobenzylidene) bicyclo[4.4.1]undeca-1(10), 2,4,6,8-pentaen-2-ylamine $3 \mathrm{c}\left(\mathrm{Ar}=p-\mathrm{O}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)$. This compound had m.p. $39^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.39\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{A}}\right),-0.02$ $\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 6.96(1 \mathrm{H}, \mathrm{d}, J 9.3,3-\mathrm{H}), 7.17(1 \mathrm{H}, \mathrm{t}, J 9.3$, 4-H), 7.25-7.37 ($2 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 9-\mathrm{H}$), $7.40-7.54$ ($2 \mathrm{H}, \mathrm{m}, 5-\mathrm{and}$ $7-\mathrm{H}), 7.93(1 \mathrm{H}, \mathrm{d}, J 7.3,10-\mathrm{H}), 8.11\left(2 \mathrm{H}, \mathrm{d}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$-system, J $7.5,2 \times \mathrm{ArH}), 8.47\left(2 \mathrm{H}, \mathrm{d}, \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}\right.$-system, $2 \times \mathrm{ArH}, J 7.5$) and $8.69(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH})$ (Found: $\mathrm{M}^{+}, 290.1055 . \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{M}, 290.1055$).

N -(2,4-Dichlorobenzylidene)bicyclo[4.4.1]undeca-1(10), 2,4,-6,8-pentaen-2-ylamine $3 \mathrm{~d}\left(\mathrm{Ar}=2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{4}\right)$. This compound had m.p. $45^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.42(1 \mathrm{H}, \mathrm{d}, J 9.5$ and $\left.1.1,11-\mathrm{H}_{\mathrm{A}}\right),-0.01\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 6.90(1 \mathrm{H}, \mathrm{d}, J 9.3$, 3-H), 7.13 ($1 \mathrm{H}, \mathrm{t}, J 9.3,4-\mathrm{H}$), 7.22-7.29 ($2 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 9-\mathrm{H}$), $7.34-7.55(4 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArH}, 5-\mathrm{H}), 7.89(1 \mathrm{H}, \mathrm{d}, J 7.0,7-\mathrm{H}), 8.27$ $(1 \mathrm{H}, \mathrm{d}, J 7.3,10-\mathrm{H})$ and $8.97(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH})$ (Found: M^{+}, 313.0416. $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}$ requires $\mathrm{M}, 313.0425$).

N -(2,6-Dichlorobenzylidene) bicyclo[4.4.1]undeca-1(10), 2,4,-6,8-pentaen-2-ylamine $3 \mathrm{e}\left(\mathrm{Ar}=2,6-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$. Red oil, $\delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right)-0.47\left(1 \mathrm{H}, \mathrm{d}, J 9.5\right.$ and $\left.1.1,11-\mathrm{H}_{\mathrm{A}}\right),-0.02(1 \mathrm{H}, \mathrm{d}, J$ $\left.9.5,11-\mathrm{H}_{\mathrm{B}}\right), 6.87(1 \mathrm{H}, \mathrm{d}, J 9.3,3-\mathrm{H}), 7.11(1 \mathrm{H}, \mathrm{t}, J 9.3,4-\mathrm{H})$, 7.18-7.50 ($7 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArH}, 5-, 7-, 8-\mathrm{and} 9-\mathrm{H}), 7.89(1 \mathrm{H}, \mathrm{d}, J$ $7.3,10-\mathrm{H})$ and $8.80(1 \mathrm{H}, \mathrm{s}, \mathrm{N}=\mathrm{CH})$ (Found: $\left.\mathrm{M}^{+}, 313.0425\right)$.

General Procedure for the Preparation of $\mathrm{N}-$ Aryl- $\mathrm{N}^{\prime}-(1,6-$ Methano[10]annulenyl) carbodiimides $\mathbf{3 f - h}(\mathrm{X}=\mathrm{C}=\mathrm{NAr})$.-(a) A solution of the iminophosphorane $3\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{2}(1.5 \mathrm{~g}$, 3.6 mmol) and phenyl isothiocyanate ($0.49 \mathrm{~g}, 3.6 \mathrm{mmol}$) in anhydrous benzene ($50 \mathrm{~cm}^{3}$) was refluxed for 3 h . After removal of the solvent under reduced pressure the residual oil was dissolved in hexane and the mixture was filtered to remove insoluble material. The filtrate was concentrated and chromatographed (SiO_{2}; hexane-ethyl acetate $10: 1$) to give N-aryl- N^{\prime} -(1,6-methano[10]annulenyl)carbodiimides $3 \mathrm{f}-\mathrm{h}(\mathrm{X}=\mathrm{C}=\mathrm{NAr})$.

Compound $3 \mathrm{f}(\mathrm{Ar}=\mathrm{Ph})$ was a yellow oil $(0.76 \mathrm{~g}, 82 \%)$; $v_{\max } / \mathrm{cm}^{-1} 2135(\mathrm{~N}=\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.43(1 \mathrm{H}, \mathrm{d}, J 9.5$, $\left.11-\mathrm{H}_{\mathrm{A}}\right),-0.09\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 7.16(1 \mathrm{H}, \mathrm{d}, J 9.5$, $3-\mathrm{H}), 7.18(1 \mathrm{H}, \mathrm{t}, J 9.1,4-\mathrm{H}), 7.25(1 \mathrm{H}, \mathrm{d}, J 9.5,5-\mathrm{H}), 7.27-7.42$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), $7.42-7.52$ ($2 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 9-\mathrm{H}$), 7.58 ($1 \mathrm{H}, \mathrm{d}, J 9.0$, $7-\mathrm{H}$) and $7.92(1 \mathrm{H}, \mathrm{d}, J 8.3,10-\mathrm{H})$ (Found: $\mathrm{M}^{+}, 258.1153$. $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2}$ requires $\mathrm{M}, 258.1157$).
(b) With p -tolyl isocyanate. Under conditions similar to those in (a), a solution of iminophosphorane $3\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{2}(2.08 \mathrm{~g}$, 5 mmol) in benzene ($50 \mathrm{~cm}^{3}$) and p-tolyl isocyanate $\left(0.63 \mathrm{~cm}^{3}\right.$, 5 mmol) gave the carbodiimide $3 \mathrm{~g}\left(\mathrm{Ar}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$ as a yellow oil ($1.01 \mathrm{~g}, 74 \%$); $\nu_{\text {max }} / \mathrm{cm}^{-1} 2133 \quad(\mathrm{~N}=\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}^{-}}$ $\left(\mathrm{CDCl}_{3}\right)-0.60\left(1 \mathrm{H}, \mathrm{dd}, J 9.5\right.$ and $\left.1.1,11-\mathrm{H}_{\mathrm{A}}\right),-0.21(1 \mathrm{H}, \mathrm{dd}$, $\left.J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} M e), 6.93-7.03(2 \mathrm{H}, \mathrm{m}, 3-$ and $4-\mathrm{H})$,
7.03-7.22 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}, 5-\mathrm{and} 9-\mathrm{H}), 7.32(1 \mathrm{H}, \mathrm{dd}, J 8.3,8-\mathrm{H})$, $7.41(1 \mathrm{H}, \mathrm{d}, J 8.3,7-\mathrm{H})$ and $7.76(1 \mathrm{H}, \mathrm{d}, J 8.3,10-\mathrm{H})$ (Found: M^{+}, 272.1314. $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{~N}_{2}$ requires $\mathrm{M}, 272.1313$).
(c) With 2,4-dichlorophenyl isothiocyanate. Under similar conditions to those described in (a), a solution of iminophosphorane $3\left(\mathrm{X}=\mathrm{PPh}_{3}\right)^{2}(2.08 \mathrm{~g}, 5 \mathrm{mmol})$ in benzene $\left(50 \mathrm{~cm}^{3}\right)$ and 2,4-dichlorophenyl isocyanate $(0.94 \mathrm{~g}, 5 \mathrm{mmol})$ gave the carbodiimide $\mathbf{3 h}\left(\mathrm{Ar}=2,4-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}\right)$ as a yellow oil (1.24 g , 76%); $v_{\max } / \mathrm{cm}^{-1} 2135(\mathrm{~N}=\mathrm{C}=\mathrm{N}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.50(1 \mathrm{H}$, dd, $J 9.5$ and $\left.1.1,11-\mathrm{H}_{\mathrm{A}}\right),-0.14\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 7.03-7.27$ ($3 \mathrm{H}, \mathrm{m}, 3-\mathrm{and} 4-\mathrm{H}$, and $1 \times \mathrm{ArH}$), 7.27-7.33(3 H, m, $2 \times \mathrm{ArH}$ and $5-\mathrm{H}), 7.33-7.53(3 \mathrm{H}, \mathrm{m}, 7-, 8-$ and $9-\mathrm{H})$ and $7.80-7.93(1 \mathrm{H}$, $\mathrm{m}, 10-\mathrm{H}) ; m /=330\left(\mathrm{M}^{+}+4\right), 328\left(\mathrm{M}^{+}+2\right)$ and $326\left(\mathrm{M}^{+}\right)$ (Found: C, 65.95; H, 3.5; N, 8.6. $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{~S}$ requires C , 66.07 ; H, 3.70 ; N, 8.56%).

General Procedure for the Reaction of Carbodiimides 3f, g ($\mathrm{X}=\mathrm{NAr}$ and $\mathrm{Ar}=\mathrm{Ph}$ or $\mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4}$) with Enamines 11a, b ($n=1$ or 2).-A solution of carbodiimide $3 f$ or 3 g and enamine 11a or 11 b (3 mol equiv.) in anhydrous bromobenzene ($10 \mathrm{~cm}^{3}$) was refluxed for 30 min . The reaction mixture was concentrated and the residue was chromatographed $\left(\mathrm{SiO}_{2}\right.$; hexane-ethyl acetate $10: 1$) to yield the pyridine derivatives $\mathbf{1 2 a - d}$.

4-Anilino-2,3-dihydro-1H-6,11-methanocyclodeca[b]cyclopenta $[\mathrm{d}]$ pyridine $12 \mathrm{a}\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2} \mathrm{R}^{3}=-\left[\mathrm{CH}_{2}\right]_{3}{ }^{-}\right)(0.57 \mathrm{~g}$, $41 \%) ; v_{\max } / \mathrm{cm}^{-1} 3450(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.27(1 \mathrm{H}, \mathrm{dd}, J$ 9.5 and $\left.1.1,11-\mathrm{H}_{\mathrm{A}}\right), 1.12\left(1 \mathrm{H}, \mathrm{d}, J 9.5,11-\mathrm{H}_{\mathrm{B}}\right), 2.17-2.36(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 2.87-2.98\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.19-3.31\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.27$ ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 7.03-7.08 (3 H, m, $2 \times \mathrm{ArH}, 4-\mathrm{H}), 7.23-7.33(4 \mathrm{H}$, $\mathrm{m}, 3 \times \mathrm{ArH}, 7-\mathrm{H}), 7.35-7.43(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{and} 9-\mathrm{H}), 7.84(1 \mathrm{H}, \mathrm{d}$, $J 7.5,5-\mathrm{H})$ and $7.85(1 \mathrm{H}, \mathrm{d}, J 7.5,10-\mathrm{H}) ; m / z 324\left(\mathrm{M}^{+}\right)$(Found: $\mathrm{C}, 85.0 ; \mathrm{H}, 6.0 ; \mathrm{N}, 8.7 \% ; \mathrm{M}^{+}, 324.1627 . \mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2}$ requires C , $85.15 ; \mathrm{H}, 6.21 ; \mathrm{N}, 8.63 \%$; M, 324.1626).

5-Anilino-1,2,3,4-tetrahydro-7,12-methanocyclodeca[c]isoquinoline $\mathbf{1 2 b}\left(\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2} \mathrm{R}^{3}=-\left[\mathrm{CH}_{2}\right]_{4}{ }^{-}\right)(0.23 \mathrm{~g}, 37 \%)$; $v_{\text {max }} / \mathrm{cm}^{-1} 3454(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.28(1 \mathrm{H}$, dd, J 8.5 and $\left.1.1,11-\mathrm{H}_{\mathrm{A}}\right), 1.05\left(1 \mathrm{H}, \mathrm{d}, J 8.5,11-\mathrm{H}_{\mathrm{B}}\right), 1.28-1.44\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right)$, 1.47-2.13 (2 H, m, CH2 $), 2.61-2.76\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.02-3.15$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$) , $6.44(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.97-7.14(4 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{ArH}$, 4-H), 7.14-7.24 (3 H, m, $2 \times \mathrm{ArH}, 7-\mathrm{H}), 7.35-7.47$ ($2 \mathrm{H}, \mathrm{m}, 8-$ and $9-\mathrm{H}), 7.80(1 \mathrm{H}, \mathrm{d}, J 9,5-\mathrm{H})$ and $7.86(1 \mathrm{H}, \mathrm{d}, J 9,10-\mathrm{H}) ; m / z$ $338\left(\mathrm{M}^{+}\right)$(Found: C, 85.1; H, 6.5; N, 8.3\%; $\mathrm{M}^{+}, 338.1777$. $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2}$ requires $\mathrm{C}, 85.17 ; \mathrm{H}, 6.55 ; \mathrm{N}, 8.28 \% ; \mathrm{M}, 338.1783$).

4-(p-Toluidino)-2,3-dihydro-1H-6,11-methanocyclodeca $[\mathrm{b}]$ cyclopenta[d]pyridine $\quad 12 \mathrm{c} \quad\left(\mathrm{R}^{1}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \quad \mathrm{R}^{2} \mathrm{R}^{3}=\right.$ $\left.-\left[\mathrm{CH}_{2}\right]_{3}{ }^{-}\right)(0.24 \mathrm{~g}, 39 \%) ; v_{\max } / \mathrm{cm}^{-1} 3429(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)$, $-0.34\left(1 \mathrm{H}, \mathrm{dd}, J 10\right.$ and $\left.1.1,11-\mathrm{H}_{\mathrm{A}}\right), 1.05(1 \mathrm{H}, \mathrm{d}$, $\left.J 10,11-\mathrm{H}_{\mathrm{B}}\right), 2.16-2.27\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.29(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.82-$ $2.92\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 3.13-3.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.22(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $6.93(1 \mathrm{H}, \mathrm{d}, J 7.7,4-\mathrm{H}), 6.97(1 \mathrm{H}, \mathrm{d}, J 6.8,7-\mathrm{H}), 7.13-7.29(5 \mathrm{H}$,
$\mathrm{m}, 2 \times \mathrm{ArH}, 5-, 8-\mathrm{and} 9-\mathrm{H}), 7.69(2 \mathrm{H}, \mathrm{d}, J 8.4,2 \times \mathrm{ArH})$ and $7.78(1 \mathrm{H}, \mathrm{d}, J 7.5,10-\mathrm{H}) ; m / z 338\left(\mathrm{M}^{+}\right)$(Found: C, 85.0; H, 6.7; $\mathrm{N}, 8.2 \% ; \mathrm{M}^{+}, 338.1777$).

5-(p-Toluidino)-1,2,3,4-tetrahydro-7,12-methanocyclodeca[c]isoquinoline 12d $\quad\left(\mathrm{R}^{1}=\mathrm{p}-\mathrm{MeC}_{6} \mathrm{H}_{4}, \quad \mathrm{R}^{2} \mathrm{R}^{3}=-\left[\mathrm{CH}_{2}\right]_{4}^{-}\right)$ $(0.22 \mathrm{~g}, 34 \%) ; v_{\max } / \mathrm{cm}^{-1} 3448(\mathrm{NH}) ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right)-0.35(1 \mathrm{H}$, $\mathrm{d}, J 9$ and $\left.1.1,11-\mathrm{H}_{\mathrm{A}}\right), 0.98\left(1 \mathrm{H}, \mathrm{d}, J 9,11-\mathrm{H}_{\mathrm{B}}\right), 1.70-1.84(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{CH}_{2}\right), 1.91-2.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.30(3 \mathrm{H}, \mathrm{s}, \mathrm{Ar} M e), 2.52-2.62$ ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$), 2.95-3.06 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}$) $, 6.31(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.93$ (1 H, d, J7.7, 4-H), $7.03(1 \mathrm{H}, \mathrm{d}, J 6.8,7-\mathrm{H}), 7.06-7.19(3 \mathrm{H}, \mathrm{m}$, $5-, 8-$ and $9-H), 7.14-7.19(2 \mathrm{H}, \mathrm{d}, J 7.8,2 \times \mathrm{ArH}), 7.57-7.62$ $(2 \mathrm{H}, \mathrm{d}, J 7.8,2 \times \mathrm{ArH})$ and $7.77(1 \mathrm{H}, \mathrm{d}, J 7.7,10-\mathrm{H}) ; m / z 352$ $\left(\mathbf{M}^{+}\right)$(Found: C, 84.9; H, 6.8; N, 7.9\%; $\mathbf{M}^{+}, 352.1937 . \mathrm{C}_{25} \mathrm{H}_{24}{ }^{-}$ N_{2} requires C, $85.19 ; \mathrm{H}, 6.86 ; \mathrm{N}, 7.95 \%$; M, 352.1939).

Acknowledgements

Support by the Verband der Chemischen Industrie-Fonds der Chemie is gratefully acknowledged. We also thank BASF AG, Bayer AG and Hoechst AG for the donation of chemicals, and ICN-Biomedicals for the donation of silica gel. We are indebted to Mrs. A. Schormann, Mrs. U. Hertle and Dipl.-Chem. P. Meffert for recording the NMR spectra, to Mr. H. Rudy for measuring the mass spectra, and to Mr. P. Weyrich for performing microanalyses and measuring the IR and UV spectra.

References

1 P. Molina and P. M. Fresneda, J. Chem. Soc., Perkin Trans. I, 1988, 1819; P. Molina, A. Arques, A. Alias and M. V. Vinander, Tetrahedron Lett., 1991, 32, 4401; M. Nitta, H. Kawaji and N. Kanomata, Tetrahedron Lett., 1992, 33, 251.

2 H. Suschitzky, W. Kramer, R. Neidlein, P. Rosyk and T. Bohn, J. Chem. Soc., Perkin Trans. I, 1991, 923.

3 N. Kanomata, H. Kawaji and M. Nitta, J. Org. Chem., 1992, 57, 618.

4 P. Molina, M. Alajarin and A. Vidal, Tetrahedron, 1989, 45, 4286.
5 (a) J. Barluenga, M. Ferrero and F. Palacios, J. Chem. Soc., Perkin Trans. I, 1990, 2193; (b) M. Nitta, H. Soeda, S. Koyama and Y. Lino, Bull. Chem. Soc. Jpn., 1991, 64, 1325; (c) P. Molina, M. Alajarin and A. Vidal, J. Chem. Soc., Chem. Commun., 1990, 1277.

6 A. L. Anet and L. Yavari, Org. Magn. Reson., 1976, 8, 327; I. Ruppert, Angew. Chem., Int. Ed. Engl., 1977, 16, 311.
7 G. Desimoni and G. Tacconi, Chem. Rev., 1975, 75, 651; T. Saito, T. Ohkubo, K. Maruyama, H. Kuboki and S. Motoki, Chem. Lett., 1993, 1127. See also refs. $5 b, c$.
8 V. I. Grigos, L. S. Pavarov and D. M. Michaiolov, Izv. Akad. Nauk SSSR., Ser. Khim., 1965, 2163; L. S. Pavarov, Russ. Chem. Rev. (Engl. Transl.), 1967, 36.

Paper 3/07217G
Received 6th December 1993 Accepted 20th December 1993

